Ten Machine Learning Algorithms to Learn Machine Learning Practitioners have different personalities. While some of them are “I am an expert in X and X can train on any type of data”, where X = some algorithm, some others are “Right tool for the right job people”. A lot of them also subscribe to “Jack of all trades. Master of one” strategy, where they have one area of deep expertise and know slightly about different fields of Machine Learning. That said, no one can deny the fact that as practicing Data Scientists, we will have to know basics of some common machine learning algorithms, which would help us engage with a new-domain problem we come across. This is a whirlwind tour of common machine learning algorithms and quick resources about them which can help you get started on them. 1. Principal Component Analysis(PCA)/SVD PCA is an unsupervised method to understand global properties of a dataset consisting of vectors. Covariance Matrix of data points is analyzed here to un
Comments
Post a Comment